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Fig. 1. Simulation of three yarn-level tablecloths stacked on top of each other. We handle both intra-fabric and inter-fabric contacts implicitly with our novel
Eulerian-on-Lagrangian (EoL) simulation. Frictional contact is correctly handled, even under extreme sliding and crossing of yarns. We introduce novel EIL
nodes to handle robustly pervasive degeneracies in the discretization. The rightmost image shows the soup of nodes around the edge of the table. White dots
represent contacts between standard EoL nodes, red dots contacts between our novel EIL nodes, and pink dots contacts between EoL and EIL nodes.

This paper introduces a method to simulate complex rod assemblies and
stacked layerswith implicit contact handling, through Eulerian-on-Lagrangian
(EoL) discretizations. Previous EoL methods fail to handle such complex
situations, due to ubiquitous and intrinsic degeneracies in the contact geom-
etry, which prevent the use of remeshing and make simulations unstable.
We propose a novel mixed Eulerian-Lagrangian discretization that supports
accurate and efficient contact as in EoL methods, but is transparent to in-
ternal rod forces, and hence insensitive to degeneracies. By combining the
standard and novel EoL discretizations as appropriate, we derive mixed
statics-dynamics equations of motion that can be solved in a unified manner
with standard solvers. Our solution is simple and elegant in practice, and
produces robust simulations on large-scale scenarios with complex rod ar-
rangements and pervasive degeneracies. We demonstrate our method on
multi-layer yarn-level cloth simulations, with implicit handling of both intra-
and inter-layer contacts.
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1 INTRODUCTION
The simulation of rods has been extensively studied in computer
graphics. This is not surprising, as many daily-life objects are com-
posed of rod-like structures, such as ropes [Bergou et al. 2008;
Pai 2002], chains, belts, cloth [Kaldor et al. 2008], cables [Servin
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et al. 2010], hair [Selle et al. 2008], tendons [Sachdeva et al. 2015],
spaghetti, or even fluid filaments [Bergou et al. 2010].

Rod simulations become particularly challenging under complex
contact arrangements, as their small cross-section makes them vul-
nerable to collision handling errors. But when contacts persist over
time, with rods sliding with respect to each other, Eulerian-on-
Lagrangian (EoL) discretizations [Sueda et al. 2011] offer an attrac-
tive approach to gain robustness in contact handling, at the expense
of a slightly more complex derivation of the equations of motion.
EoL methods augment the classic Lagrangian discretization of de-
formable solids with Eulerian coordinates that allow nodes to move
in the material domain. The power of EoL methods is the ability to
track explicitly contact points both in the spatial and material do-
mains, simply by placing nodes at contact locations, and thus reduce
the complexity and increase the accuracy of contact handling.

However, we have observed that existing EoL works exploit only
moderately this power. To the best of our knowledge, none of them
shows multiple stacked layers of rods or shells sliding with respect
to each other. As we discuss in detail later in Section 3, there is a
fundamental reason for this. With sliding contacts, EoL discretiza-
tions easily become degenerate. To avoid simulation instabilities,
previous EoL works use remeshing, but this strategy cannot be used
under multiple stacked layers, when the geometry of the contact
configuration is intrinsically degenerate, with contacts crossing
each other.

We present a simulation method that handles robustly degenerate
discretizations in EoL rods. Our method does not use remeshing;
it relies instead on a formulation of equations of motion that is
insensitive to degenerate elements. As a result, we can simulate
stacks of rods sandwiched between sliding contacts, with nodes
constantly crossing each other in the material domain, all with
implicit contact handling enabled by the EoL approach.

The key to our solution is a type ofmixed Eulerian-Lagrangian dis-
cretization node, carefully designed to support accurate and efficient
modeling of contact interactions as in EoL methods, but transparent
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to the modeling of internal rod forces, and hence insensitive to de-
generacies in the discretization. In Section 3 we describe this type
of node, which we call Eulerian with Interpolated Lagrangian (EIL in
short), and we discuss its beneficial properties.

Based on a combination of the new EIL and regular EoL discretiza-
tions, we have designed a simple and elegant algorithm to derive
robust equations of motion at runtime. The strategy is to replace
offending EoL nodes with EIL nodes, and skip EIL nodes in the
definition of internal forces. Our algorithm, described in Section 4,
yields a combination of dynamics and statics equations, which can
be solved in a unified manner with standard solvers.
In our results, we show the application of our solution to chal-

lenging simulations of yarn-level cloth. Beyond single woven or knit
fabrics [Cirio et al. 2014, 2017], we extend the power of EoL methods
to stacked layers of fabrics, by handling implicitly both intra-fabric
as well as inter-fabric contacts. We demonstrate results on several
familiar settings: tablecloth layers, pant pockets, and shirt tags. We
also show that our method enables scalable EoL-based simulation of
complex knit fabrics where multiple yarns slide and cross each other.
To date, these fabrics could be handled only through traditional La-
grangian methods with explicit contact handling [Kaldor et al. 2008],
assuming periodicity to predict the relaxed pattern shapes [Leaf
et al. 2018]. The combined simplicity and effectiveness of our solu-
tion leads to an elegant implementation and robust results, despite
ubiquitous discretization degeneracies as shown in Fig. 1. While
we only demonstrate our ideas on rods, we believe that the core
concepts can also be extended to other EoL domains such as thin
shells [Weidner et al. 2018].

2 RELATED WORK
Before describing our method in depth, we briefly overview related
work on rod models, yarn-level cloth simulation, other EoL methods,
and contact handling of cloth and hair stacks.

Eulerian-on-LagrangianMethods. Fan et al. [2013] coined the term
“Eulerian-on-Lagrangian” to denote simulations that use both Euler-
ian and Lagrangian coordinates to define aggregate kinematics. They
used their method to combine large rigid or modal motion with ro-
bust deformation on Eulerian grids. In their setting, the combined
Eulerian and Lagrangian kinematics yield an ambiguous represen-
tation, which is resolved by minimizing the Eulerian contribution.

Earlier, however, Sueda et al. [2011] had introduced an EoLmethod
for the simulation of rods in contact with other objects. Theirmethod
places nodes with both Eulerian and Lagrangian coordinates at
contact locations, and ensures that rod bending is accurately and
efficiently resolved even when contacts slide. The method of Sueda
et al. forms the basis for our work, and we provide a more extensive
discussion of its benefits and limitations in Section 3.
Similar EoL methods have been designed for the simulation of

skin sliding on top of the body [Li et al. 2013], or the interaction of
tendons with phalanges in hand biomechanics [Sachdeva et al. 2015].
EoL cloth [Weidner et al. 2018] extends Sueda’s rod discretization to
cloth modeled as a thin shell. By setting discretization nodes at sharp
contacts, simulations avoid locking and spurious energy artifacts.
EoL cloth uses conformal remeshing to maintain good mesh quality
while contact nodes slide in the material domain. However, in the

examples shown by the authors, contact nodes are sparse, and there
are no sandwiched contacts or multiple stacked cloth layers, hence
contact nodes never approach and cross each other. Contrary to their
examples, remeshing is not an option in cases where degeneracies
are intrinsic to the contact geometry, such as the ones we handle in
our work.

Deformable Rods. Rods, strands, or deformable curves in general
have been simulated using diverse methods. Earlier approaches
relied on mass-spring systems due to their simplicity [Rosenblum
et al. 1991], but these methods have been adapted to fit the needs
of production animations not long ago [Iben et al. 2013; Selle et al.
2008]. Other methods represent rods as curves with adapted frames.
A popular approach is to use an explicit representation of the center
line, by discretizing the Cosserat geometry model [Pai 2002; Spill-
mann and Teschner 2007]. Then, additional constraints must be
introduced to enforce inextensiblity. Bergou et al. [2008] introduced
the discrete elastic rod model, where an oriented frame remains
always naturally adapted to the center line thanks to a curve-angle
parameterization. In our examples, we use a twist-free elastic rod
model, but any of the methods above could be integrated to model
twist, as they all discretize the center line explicitly. An alternative
is to represent the center line implicitly using a reduced-coordinate
formulation based on curvatures and twist [Bertails et al. 2006].
Some methods consider adaptive discretizations of rods to accu-

rately resolve contacts. One possibility is to resample rods while
minimizing the energy difference [Spillmann and Teschner 2008],
and another possibility is to introduce nodes based on the tension
of the rod [Servin et al. 2010]. EoL methods [Sueda et al. 2011] can
also be regarded as adaptive discretizations, where contact-based
adaptivity is achieved by sliding nodes in the material domain.

Yarn-Level Cloth. Rod models are also used in computer graphics
for the simulation of cloth at the yarn level. While costly, due to the
massive number of yarns in real garments, yarn-level models offer
the ability to reproduce, by construction, the structural nonlinearity
and anisotropy of fabrics. Kaldor et al. [2008] introduced the first
method to simulate complete pieces of cloth at the scale of yarns. In
their method, yarns were represented as inextensible rods, and
inter-yarn contacts were explicitly detected and resolved using
repulsive forces. Their work was later extended to accelerate contact
handling [Kaldor et al. 2010].
Cirio et al. [2014] proposed a different approach for yarn-level

cloth simulation based on the EoL discretization of rods of Sueda
et al. [2011]. They assumed yarns to be in persistent contact in
order to avoid explicit intra-fabric contact handling. Their original
method for woven fabrics was later extended to support some types
of knits [Cirio et al. 2017]. However, the method remains limited, as
yarns are not allowed to cross each other while sliding. Crossing
of sliding yarns is fundamental for the simulation of the relaxation
process of knit patterns [Leaf et al. 2018]. In our work, we apply
our novel EoL method to the simulation of yarn-level cloth, using
the model of Cirio et al. as starting point. We leverage the concept
of persistent yarn contact to model not only simple intra-fabric
contacts as they did, but also more complex intra-fabric contacts
present in knit patterns, and inter-fabric contacts resulting from
multiple stacked layers of yarn-level cloth. We show that, thanks
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Fig. 2. Examples of mixed Eulerian-Lagrangian discretization of rods. (a) EoL discretization of a rod in sliding contact with an arbitrary object O , proposed by
Sueda et al. [2011]. (b) Application of the EoL discretization to sliding rod-rod contact, proposed by Cirio et al. [2014]. (c) Two rods (orange and green) slide on
another rod (blue). As the material distance ∆u between the contact points gets smaller, forces become infinitely stiff, even in the undeformed case. The
degeneracy in the discretization makes the simulation unstable. (d) We propose a novel discretization of sliding rod contacts. When a rod segment is close to
degenerate, we replace one EoL node with an EIL node (in red). In this node, the Eulerian coordinate is free, while the Lagrangian coordinates are linearly
interpolated. The material distance of the degenerate segment does not participate in the discrete elastic energy of the rod, which results in robust equations.

to our solution, many novel complex phenomena can be accurately
and robustly simulated without explicit contact handling.
Yarn-level cloth models are also used in computer graphics to

model design and fabrication processes, in particular for knits. Yuk-
sel et al. [2012] created a data structure that enables the construction
of knit garments as a tiling procedure. Leaf et al. [2018] introduced
a method to predict the visual patterns of complex knits once re-
laxed, using the yarn-level model of Kaldor et al. [2008]. To alleviate
the challenge of explicit contact handling on large cloth patches,
they added support for periodic boundary conditions, and simulated
small repeated patches. With their method, knit pattern designs can
only be studied on flat undeformed configurations. In our work, with
our novel EoL-based discretization of yarn-level cloth, we show that
we can robustly scale up the size and complexity of knit simulations,
and we can analyze complex knit patterns on draped configurations.

Contact Handling of Cloth and Hair Stacks. In cloth and hair sim-
ulation, accurate and efficient contact handling has long been one
of the major challenges [Bridson et al. 2002]. Our intention is not to
cover related work extensively, but to discuss representative works
that have paid particular attention to robust handling of cloth or
hair stacks.
When multiple cloth layers collide, the exchange of momentum

across layers complicates a correct resolution of non-penetration, de-
formation, and frictional forces together. Non-rigid impact zones [Har-
mon et al. 2008] simplify the problem by fixing normal motion while
enabling tangential sliding. A different approach to enforce robust
and accurate contact handling is to turn to asynchronous time-
stepping [Harmon et al. 2009]. For cloth layers, it is also possible
to resolve contact by meshing the inter-layer gaps and preventing
mesh inversion [Müller et al. 2015].
In hair assemblies, correct handling of friction plays a key role.

One of the challenges is the nonsmooth nature of friction, which
requires careful iterative solvers for accurate results [Daviet et al.
2011]. Another challenge is the strong nonlinearity of rod deforma-
tion modes to collisions, which requires adaptivity of the iterative
solvers for large time stepping [Kaufman et al. 2014]

A different approach to simplify the complexity of hair simulation
is to combine features of Eulerian and Lagrangian simulation, in
particular Eulerian representations for bulk hair interactions, and
Lagrangian representations for detailed contact [McAdams et al.

2009]. Recently, combined Eulerian-Lagrangian methods have also
shown success for the robust simulation of stacks of cloth within the
Material Point Method. These methods enable accurate Lagrangian
tracking of cloth surfaces, plus efficient Eulerian contact handling
using a constitutive model of frictional contact [Jiang et al. 2017].
Early methods have been extended to handle rich bending mod-
els [Guo et al. 2018].

3 EULERIAN-LAGRANGIAN RODS
In this section, we present a novel mixed Eulerian-Lagrangian dis-
cretization of rods. We start with a recap of the regular EoL dis-
cretization [Sueda et al. 2011], and its application to yarn-level cloth
simulation [Cirio et al. 2014]. Then we discuss the sources of de-
generate discretizations and their devastating effects. We conclude
with the introduction of our new discretization.

All our exposition refers to the representation of the center line
of a rod. The representation of twist is complementary. In our imple-
mentation, we use twist-free rods and we assume a homogeneous
cross-section, but our approach can be extended to rod representa-
tions with twist.

3.1 Eulerian on Lagrangian Discretization
When rods are in contact with other objects, contact points tend to
concentrate large local bending, due to the low bending stiffness of
the rod and the action of localized external forces. Then, it appears
particularly interesting to introduce discretization nodes at contact
points, and thus represent efficiently and accurately rod bending.
Moreover, if contacts are persistent, using these points in the dis-
cretization may simplify overall computations, by avoiding explicit
detection and resolution of contacts.
However, contact points may not be stationary in the material

domain, due to sliding. To account for the motion of discretization
nodes within the material domain, Sueda et al. [2011] introduced
the EoL discretization of constrained rods. As shown in Fig. 2-a,
a rod node is placed at the contact point between the rod and an
arbitrary object O , and its coordinates (u, x) store both Lagrangian
(spatial) coordinates x and Eulerian (material) coordinates u. We use
as Eulerian coordinate the undeformed arc length of the rod. With
both Eulerian and Lagrangian coordinates, the kinematics of the rod
can suffer ambiguities. However, by forcing the rod node to remain
at the contact point, its Lagrangian coordinates are constrained, and
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the ambiguity is resolved. We denote the contact point on the other
object O as xo , and then, without loss of generality, the constraint
on the rod node can be expressed as

x − xo = 0. (1)

Later, Cirio et al. [2014] considered the particular case of rod-rod
contact. Then, the contact point on object O is also an EoL rod
node, with Eulerian coordinate v . Moreover, in rod-rod contact, the
contact constraint (1) can be enforced implicitly, bymaking both EoL
nodes share their Lagrangian coordinates. In other words, the two
EoL nodes have coordinates (u, x) and (v, x), as shown in Fig. 2-b.
Another way of looking at the EoL discretization of rod-rod contact
is as a 5-dimensional reduced-coordinate formulation.

3.2 Degeneracies and Instabilities
While EoL rod discretizations are beneficial for the efficient and
accurate simulation of rods in contact, they are not free of difficulties.
Elastic forces become infinitely stiff when two sliding rod nodes
get arbitrarily close to each other. Consider the situation shown in
Fig. 2-c. The orange and green rods in the figure slide on the blue
rod, and approach each other. Their contact points define a blue
rod segment with material length ∆u = uc − ub and spatial length
∆x = ∥xc − xb ∥. The stretch energy Vs of a rod segment can be
expressed as a function of the ratio between the Lagrangian and
Eulerian lengths [Cirio et al. 2014], i.e.,

Vs =
1
2
ks ∆u

(
∥∆x∥
∆u
− 1

)2
, (2)

where ks is the material stiffness.
In the undeformed case, i.e., ∥∆x∥ = ∆u, the effective stiffness of

the stretch energy with respect to either the Lagrangian or Eulerian
length is ∂2Vs

∂ ∥∆x∥2
=

∂2Vs
∂∆u2 =

ks
∆u . It is evident that as the nodes slide

and get closer in the material domain, the stiffness tends to infinity,
making simulations unstable.

The problem at hand boils down to a degeneracy in the discretiza-
tion. The classic approach to avoid degenerate discretizations is to
remesh the geometry, as done as well in other EoL methods [Weid-
ner et al. 2018]. In the case of rods, the trivial approach to remeshing
is to collapse both adjacent nodes into one. However, this approach
is not viable when the nodes represent two sliding contacts. It is
paramount to retain the Eulerian coordinates of both nodes in or-
der to determine how the contacts continue sliding. To the best of
our knowledge, no prior work on EoL rods shows situations where
sliding contacts get arbitrarily close and cross each other. Sueda et
al. [2011] showed sliding contact of rods with fixed or rigid bodies;
Cirio et al. [2014; 2017] considered rod-rod contact in woven and
knitted cloth, but they applied a repulsive force when two contacts
were in close proximity; remeshing due to degeneracies was used
in EoL cloth [Weidner et al. 2018], but the examples did not exhibit
arbitrarily close sliding contacts either. Challenging situations may
appear when rods are sandwiched and the contacts cross each other,
and this situation cannot be handled by simply collapsing nearby
nodes.

3.3 Eulerian with Interpolated Lagrangian Discretization
To robustly handle degenerate discretizations under sliding contact,
we introduce another type of mixed Eulerian-Lagrangian node. This
node has only a free Eulerian coordinate, as this property is key to
correctly capture sliding. Its Lagrangian coordinates, on the other
hand, are interpolated between adjacent nodes. We call this node
an Eulerian with Interpolated Lagrangian node (EIL).

Looking again at Fig. 2-c, we take the node with Eulerian coordi-
nate ub , and we transform into an EIL node, as shown in Fig. 2-d,
with the node highlighted in red. Then, its Lagrangian coordinates
are computed through linear interpolation of its adjacent EoL nodes
as:

x(ub ) =
uc − ub
uc − ua

xa +
ub − ua
uc − ua

xc . (3)

Linear interpolation of the Lagrangian coordinates produces geo-
metric properties that make the EIL node transparent to internal
rod forces. There is no bending, hence the node does not participate
in any bending energy computation. Stretch is the same on the two
adjacent segments, hence stretch energy can be measured between
the two adjacent nodes, bypassing the EIL node. As a result, even if
the Eulerian distance between the EIL node and its adjacent nodes
becomes arbitrarily short, there is no pernicious effect on the numer-
ical stiffness, and the degenerate discretization becomes harmless.
Later in Section 4.2, we provide more details about the definition of
elastic energy terms.
At an EIL node, the contact constraint (1) can not be enforced

trivially, as the Lagrangian coordinates are not free coordinates.
Therefore, this constraint must be handled explicitly. In the rod-rod
contact shown in Fig. 2-d, this translates into an explicit constraint
between x(ub ), the interpolated position of the EIL node, and xb ,
the position of the corresponding EoL node along the orange rod.
Through the interpolation (3) of the Lagrangian coordinate on the
EIL node, the constraint affects its Eulerian coordinate, and thus
it induces sliding despite the degeneracy, as desired. It also affects
the motion of the adjacent nodes, and thus it satisfies two-way
coupling at the contact. To compute the effect of the constraint on
the various free coordinates, we make use of the Jacobian of the
linear interpolation (3).

4 ROBUST DISCRETE MECHANICS
In this section, we describe our runtime algorithm to robustly sim-
ulate the dynamics of complex arrangements of rods in sliding
contact. Our central strategy to avoid instabilities under degenerate
discretizations is to replace offending EoL nodes with the novel
EIL nodes described in the previous section, and formulate internal
rod forces that ignore the EIL nodes. We start the section with a
description of the dynamic node assignment, we continue with the
formulation of internal and external force terms, and we conclude
with the derivation of the equations of motion.

4.1 Node Assignments
On each simulation step, we start by identifying EoL and EIL nodes
for all rods in the simulation scene. To do this, we check the material
distance between pairs of consecutive nodes along each rod, and we
ensure that an EIL node is introduced every time that the distance
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is below a safety threshold. We do this efficiently through simple
list sorting and traversal operations.

For each step and each rod, let us consider as input a set of nodes
defined by their current Eulerian and Lagrangian coordinates (u, x).
These nodes may be sliding contacts inherited from the previous
step, new contacts detected through collision detection, fixed dis-
cretization points along the rod (i.e., with fixed Eulerian coordinate,
such as end points), or persistent contacts in the woven or knitted
structure of a yarn-level fabric which can be defined at preprocess-
ing.
We initialize all nodes as EoL. Then, we sort the nodes accord-

ing to their Eulerian coordinates, which yields a sorted sequence
{(ui , xi )},ui > ui−1. Next, we traverse the sequence in order. When-
ever we find that a node is closer than a safety threshold distance d
from the previous node, we tag it as EIL node (In our implementation,
the safety distance is 0.1× the length of rest-shape rod segments). In
a special case, when the current node has a fixed Eulerian coordinate
(e.g., it is an end node), we leave it as EoL node, and we tag as EIL
the last EoL node instead. Thanks to this simple node assignment
strategy, we ensure that the material distance between any pair of
consecutive EoL nodes is above the safety threshold. As EIL nodes
are determined based on sorting, they switch when two adjacent
nodes actually cross each other. However, this has little effect on
the simulation, as the nodes are co-located when they cross. We
have not observed noticeable effects due to the EIL selection policy.
We revise the assignment of nodes on every simulation step.

More specifically, in our implementation we revise them before
the first Newton step of a full nonlinear solve. Switching node
assignments to and from EoL and EIL introduces discontinuities
in energy and momentum. These discontinuities could be reduced
by locally optimizing the Lagrangian and Eulerian coordinates of
the nodes in contact. If only the switching node is optimized, we
find that simply leaving its Eulerian coordinate unchanged is an
optimal solution when strain is uniform and the two incident rod
segments are collinear, as shown in the Appendix. We have opted
for this simple solution in practice. Furthermore, whenever a node
changes its status between two steps from EIL to EoL, we initialize
its Lagrangian coordinates according to the contact constraint (1).
Energy and momentum discontinuities could also be smoothed by
making the transitions progressive within an interval of material
distance, but we found that this was not necessary in practice. All
our simulations were executed with no smoothing, yet there are no
artifacts, despite the ubiquitous node transitions.

4.2 Definition of Force Terms
In our simulations of rods, we consider internal forces that model
the resistance of rods to deformation, inter-rod forces that account
for yarn-yarn contacts in yarn-level cloth simulation, other external
forces due to rod-rod contact between different layers of cloth, or due
to additional contacts, plus gravity and damping effects. We focus
the attention on internal forces and yarn-yarn contacts. Gravity,
damping, and external collisions are unaffected by our proposed
discretization. In all cases, we follow the definitions of force terms
in previous yarn-level cloth models [Cirio et al. 2014, 2017].

Stretch and bending are defined using discrete strains, which
yield strain energy densities that are then integrated along yarn
segments. The stretch energy is defined in (2), and the bending
energy is rewritten from [Cirio et al. 2014] as

Vb = kb
θ2

∆u1 + ∆u2
, (4)

where kb is the bending stiffness, θ is the angle between two seg-
ments, and ∆1 and ∆2 are the material lengths of the two segments.
As introduced in Section 3.3, the key to a robust formulation

under degeneracies is to avoid EIL nodes in the definition of stretch
and bending energy terms. Then, on each simulation step, and for
each rod, we traverse the sequence of sorted nodes {(ui , xi )}, and
we define a stretch (resp. bending) energy term for every pair (resp.
triple) of consecutive EoL nodes.
The inclusion of EIL nodes also requires the explicit addition of

the constraint (1). We enforce this constraint using a soft constraint
with large stiffness (In our implementation, 1000× larger than the
effective stretch stiffness ks

∆u of rest-shape rod segments). Note that
the constraint may be acting between two EIL nodes (one on each
rod, if both rods suffer a degeneracy close to their contact), or be-
tween an EIL node and an EoL node. For EIL nodes, the force on the
interpolated Lagrangian coordinates is mapped to the actual free co-
ordinates through the Jacobian of linear interpolation, as discussed
in Section 3.3. We have opted for stiff soft constraints because, in
our experience, stiff zero-rest-length springs are comparatively less
problematic than other elastic terms. Note that the alternative of
hard constraints would yield a complex system of equations, com-
bining Lagrange multipliers with implicit integration of stiff stretch
forces. Our constraints are similar to the soft bindings of Sifakis et
al. [2007], but we set springs with EIL nodes, which are not fixed
in the material domain, while soft bindings set springs between
particles and fixed points on a meshed object.

Cirio et al. [2014] proposed to model friction for rod-rod contacts
as a trivial anchored spring on Eulerian coordinates. In our case, this
force model can be adopted with no changes, as both EoL and EIL
nodes retain free Eulerian coordinates. The joint effect of the contact
constraint (1) and the friction force is actually the main reason for
sliding of contact points, and therefore for the change of the Eulerian
coordinates of rod nodes. Thanks to our proposed discretization,
with free Eulerian coordinates at EIL nodes, the dynamics of rods are
correctly and robustly represented when sliding contacts cross each
other. Remeshing through naïve node collapse misses the required
free Eulerian coordinates, and does not allow correct sliding.

30°

𝜇 = 1 = tan 45°

40° 50° 60°

The figure above shows a validation of the friction model and
sliding of two patches of cloth. All contacts are handled implicitly
using EoL and EIL nodes. The green patch is fixed, and the friction
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Nodes: Lagrangian EoL Intra-Fabric EOL Inter-Fabric (max) EIL (max) Default step Sim cost (secs/step)
Tablecloth (Figs. 1 and 7) 1 576 96 290 132 200 79 019 1 ms 15.9

Pocket (Fig. 5) 2 484 398 782 245 024 45 742 1 ms 93.9
Tag (Fig. 6) 1 010 68 810 18 356 4 563 2 ms 18.18

Knit 1 (Fig. 4-left) 184 75 096 − 671 0.5 ms 17.33
Knit 2 (Fig. 4-right) 208 55 520 − 602 0.5 ms 15.53

Table 1. Simulation size and performance for the main examples in the paper. The columns indicate, for each scene: the number of pure Lagrangian nodes (i.e.,
rod endings), the intra-fabric EoL nodes due to yarn-yarn contacts within a pattern, the maximum inter-fabric EoL nodes to satisfy implicit sliding contact
between patches, and the maximum simultaneous EIL nodes to correctly handle discretization degeneracies. The last two columns show the default time step
and the average simulation cost per time step.

coefficient with the yellow patch is µ = 1. The yellow patch remains
still at inclines below 45 degrees, and slides at steeper inclines, as
expected with Coulomb’s model.
The simulation of cloth with yarn-level persistent contacts re-

quires special force terms that resist the deformation modes of
yarn-yarn contact. These are, for example, shear forces [Cirio et al.
2014] and, in the case of knits, wrapping forces [Cirio et al. 2017].
These forces are defined on Lagrangian coordinates only, with no
effect on the material length of yarn segments; therefore, they do
not induce robustness problems under degenerate discretizations.
For EIL nodes, the force is mapped to the free coordinates in the
same way as for the contact constraint discussed above.

The last relevant force is the parallel-yarn contact force, designed
by Cirio et al. [2014] to model the inability of some yarns to cross
each other within fabric patterns. In our setting, some rod nodes
should receive parallel-yarn contact forces as well, but others should
not, to allow them to cross each other. We disable parallel-yarn con-
tact forces between a pair of nodes if (a) one of the nodes represents
an external contact (e.g., with another fabric), or (b) the two col-
liding yarns lie on different sides of the rod and they do not bend
around the rod. To test if a colliding yarn bends around the rod, we
compute a bending vector by averaging the direction vectors of the
two incident yarn segments, and we check if the dot product of this
bending vector and the contact normal is above a threshold (0.25 in
our implementation).

4.3 Mixed Statics-Dynamics
Once that force terms are defined, we can also define inertial terms
and derive the equations of motion using the general Euler-Lagrange
equations [Goldstein et al. 2002], as done by Sueda et al. [2011] for
the original formulation of EoL rods. Lagrangian velocities along
a rod are obtained by interpolating Lagrangian velocities of EoL
nodes, while EIL nodes are irrelevant in this regard. Since EIL nodes
do not affect Lagrangian velocities, they do not affect kinetic energy
either. As a corollary, EIL nodes do not carry inertial terms, i.e., they
can be considered massless, and then their coordinates are defined
through static equilibrium. Therefore, to obtain the kinetic energy
of each rod, we traverse the sequence of sorted points {(ui , xi )},
and we sum a kinetic energy term for each pair of consecutive EoL
nodes. For details on the computation of the kinetic energy term
of a rod segment and the associated mass submatrix, we refer the
reader to [Cirio et al. 2014].

The combined Lagrangian and Eulerian coordinates of the simu-
lation scene form a set of reduced coordinates. We split this set into
two: q are the coordinates of EoL nodes, and qeil are the (Eulerian
only) coordinates of EIL nodes. We denote as V the total potential
energy of the simulation scene, and as M the mass matrix of EoL
nodes. Note that all mass terms of EIL coordinates qeil are null. De-
spite these null terms, the equations of motion can be derived using
the general Euler-Lagrange equations. They result in:

M Ûq + ∇qV = M Ûq + f (q, qeil) = 0; dynamic (5)
∇qeilV = feil (q, qeil) = 0; static (6)

The vector f (resp. feil) represents the forces on EoL nodes (resp. EIL
nodes).
As denoted in the equations, there are two distinct sets. EoL

nodes are governed by dynamics, while EIL nodes are governed by
static equilibrium. Despite this apparent difference, we can safely
solve all equations together. We apply implicit Euler integration to
the dynamics equations on EoL nodes, and we solve the combined
system of equations using Newton’s method. We do not resize the
system matrix when nodes transition to/from EIL. Instead, we just
cancel the matrix rows and columns of the Lagrangian coordinates
of EIL nodes.

5 RESULTS
Implementation Details. Wehave applied our rod simulationmethod

to yarn-level cloth. To this end, we have adapted the GPU solver
proposed by Cirio et al. [2014] to handle dynamic rod discretiza-
tions. On every simulation step, we first execute the node sorting
and assignment operations of Section 4.1, in parallel over all rods.
These operations have negligible cost compared to the actual solver.
Next, we execute force computations and Jacobian evaluations, par-
allelized at node level. Note that forces can be referenced to nodes
thanks to the linear structure of rods, hence force stencils can be
defined implicitly from the node ordering and rod-rod contacts.
For collision detection, we use a sphere packing approach for

cloth-cloth collisions and self-collisions, and distance fields for ex-
ternal objects. For non-persistent contacts, we use stiff penalty po-
tentials to resolve collisions.

To determine contacts that require EoL discretization, we combine
two strategies. For intra-fabric contacts, we simply use the initial
topology of the weave or knit pattern. For inter-fabric contacts, we
select the contacts detected by the collision detection step. In our
examples, we do this at initialization, as the various layers remain
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Fig. 3. Four different knit patterns with slip-stitches, where yarn-yarn contacts slide over each other. These examples could not be handled by previous EoL
yarn-level methods, and had to resort to purely Lagrangian methods with explicit contact handling. The top row shows the initial configuration for loose
knit structures, the middle row the relaxed configuration after simulation of these loose knit structures, and the bottom row the relaxed configuration after
simulation of tight knit structures. The three left-most examples are custom structures inspired by those of Leaf et al. [2018], and the rightmost example is a
jacquard structure.

in a stacked configuration once initialized. We did not support dy-
namic addition of EoL contact nodes, as in the examples the cost
of collision handling of dynamic contacts was negligible. We did
support, however, removal of contact nodes. One obvious reason for
removal is that the Eulerian coordinate of a node indicates that it
has exit the length of the rod; another reason is that the normal force
between two constrained EoL nodes pulls them together instead of
pushing, as discussed in [Cirio et al. 2014].

Fig. 4. Two large knit patches draped on a sphere. The knit patterns are
drawn from the examples in Fig. 3, and applied to larger patches. Thanks to
our EoL formulation, the simulation of these complex knits scales to large
sizes without compromising robustness.

Performance. Our simulation examples have been executed on an
Intel Core i7-7700K 4-core 4.20 GHz PC with 32 GB of RAM and a
Nvidia GeForce GTX 1080 Ti GPU with 11 GB of VRAM.
In Table 1 we show the simulation complexity of the examples

shown in the paper. We classify different types of nodes: fully La-
grangian nodes at rod endings, intra-fabric EoL nodes that represent
persistent contacts in the topology of the pattern, maximum number
of EoL nodes due to inter-fabric contact, and maximum number of si-
multaneous EIL nodes at any time in the simulation. All simulations
run robustly despite the large number of simultaneous EIL nodes,
which is an indicator of the number of degenerate rod segments in
the scene.

Table 1 also shows the simulation cost for each example, measured
in seconds per time step. The default time step ranged from 0.5 ms
to 2 ms. We have used adaptive time-stepping to reduce the time
step if the Newton solver exhibits bad convergence. The examples
occasionally reduce the time step, but they use the default value in
the large majority of steps.

Complex Knits. Earlier yarn-level simulation methods assumed a
fixed topology of the pattern mesh. This is sufficient for single-layer
wovens or simple knits made of knit or purl stitches. However, in
multi-layer wovens or complex knits with cables or slip stitches,
sliding contacts often sandwich yarns and cross each other. Our
rod simulation method enables robust handling of these structures
through an efficient EoL approach. In particular, we have tested
slip-stitch knit patterns where the slipped yarns can slide when

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.



1:8 • Rosa M. Sánchez-Banderas, Alejandro Rodríguez, Héctor Barreiro, and Miguel A. Otaduy

Fig. 5. Snapshots of a simulation of a jeans back pocket. The scene consists of two layers of yarn-level twill denim fabric, stitched on the sides and at the
bottom. We pull from the top and the bottom, inducing sliding of the two layers, as well as wrinkles influenced by the combined material. The full simulation
is resolved with implicit contact handling in our EoL formulation, and it has over 645K nodes. When the layers slide, the two groups of sliding warp and weft
yarns induce pervasive degeneracies in the discretization. The rightmost image shows the soup of nodes at the top of the pocket, with EIL nodes in red.

Fig. 6. Snapshots of simulations of a shirt neck tag. The tag is roughly 5 times stiffer than the shirt, and is stitched on the sides. We apply different deformations
to the underlying shirt fabric, from left to right: horizontal stretch, vertical stretch, shear followed by vertical stretch in the middle, and vertical stretch in the
middle followed by horizontal compression of the tag. The difference in stiffness induces sliding of the layers, as well as wrinkling at the interface (see first and
third snapshots). The last example shows the separation of the tag as it buckles. We trigger the separation of EoL contacts automatically by checking the sign
of the normal force.

the fabric gets deformed. In Fig. 3 we show the relaxation of four
different patterns: three custom structures inspired by examples of
Leaf et al. [2018], and one jacquard structure. We have tested the
four patterns under loose knitting, but also under tight knitting,
which produces more complex contact configurations. Both settings
are handled robustly.

We program the initial topology of knit patterns using a regular
grid of instructions, and we tune the rest-length of slipped yarns
to obtain relaxed patterns with different aesthetics. This approach
is equivalent to the one followed by Leaf et al. for pattern design.
However, with our EoL discretization, we also enable scalable drap-
ing of large-scale complex knits. In such case, purely Lagrangian
yarn-level models can obviously not exploit patch periodicity, as
done by Leaf et al. Fig. 4 shows two large cloth patches draped on
a sphere. These patches are stitched using two of the patterns in
Fig. 3. The simulations consist of 55K and 75K nodes, with average
inter-stitch distances of just 0.8 mm.

Multiple Layers of Yarn-Level Cloth. Cloth often appears stacked
in layers, either different garments on top of each other, or panels
of the same garment stitched together. When contact between the
layers persists over time, even if the layers slide relative to each
other, the EoL approach offers an attractive way to simulate cloth
deformation without explicit contact handling. We have evaluated
the performance of our method when applied to the simulation of
multiple layers of yarn-level cloth. The rods of the various layers pile

up in complex contact arrangements, and require constant updates
to the discretization to correctly handle the pervasive degeneracies.
Fig. 5 shows snapshots of a simulation of a jeans back pocket.

The scene consists of two layers of twill denim fabric, stitched on
the sides and at the bottom. The fabric is modeled at the yarn-level
at a realistic resolution, with 44 yarns per inch. This yields a total
of 645K nodes. We pull the pocket from the top and the bottom,
inducing sliding of the two layers. When the tension grows, the
lateral compression produces fine wrinkles that conform to the two
layers of fabric.

Fig. 6 shows snapshots of a simulations of a shirt neck tag. The tag
is stitched to the underlying shirt fabric on the sides. It is roughly 5
times stiffer than the shirt; therefore, when we pull from the fabric
of the shirt, the deformation suffers a discontinuity at the boundary
of the tag. The snapshots show horizontal stretch, vertical stretch,
shear followed by vertical stretch in the middle, and vertical stretch
in the middle followed by horizontal compression of the tag. Notice
in the second and third snapshots visible sliding of the two layers,
and in the first and third snapshots wrinkles next to the boundary
of the tag due to the differences in material combined with sliding.
The last snapshot also shows the tag separating as it buckles. In this
last snapshot, the simulation begins by stretching the underlying
cloth, and the EoL representation resolves the sliding motion of the
two layers without the need for explicit contact handling. Then, we
compress the tag, which buckles and produces sticking forces at
EoL contacts. We trigger automatically the removal of EoL contact
constraints, allowing the tag to separate.
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Fig. 7. Similar scenes to the one in Fig. 1, but with no friction between the tablecloths, and in two different arrangements. Two left-most images: aligned
tablecloths. Two right-most images: tablecloths at an angle. Despite continuous sliding and changes to the discretization, the green tablecloth remains
perfectly on the table. Sliding is smooth and robust both when the tablecloths are aligned or at an angle. In the left scene, the number of simultaneous EIL
nodes can be as high as 34% of the total nodes.

Fig. 1 and Fig. 7 show two simulations of stacked tablecloth layers
with different friction properties. The tablecloths are modeled as
thick-yarn plain weaves, with an inter-yarn separation of 5.6 mm,
and yarn radius of 2.25 mm. In this scene, we also added EoL nodes
at the edge of the table, to enable smooth sliding on sharp features.
As described by Weidner et al. [2018], the tablecloths suffer energy
discontinuities or even get stuck if we do not do so. With three
stacked layers, the number of simultaneous EIL nodes can be as
high as 34% of the total nodes. The figures also show close-ups
of the discretizations at particular instants in time. As evidenced
in the accompanying video, the discretizations change constantly.
Despite continuous sliding and changes to the discretization, our
simulation method handles contact and friction correctly. Note that
friction is controlled simply through the Coulomb coefficient of the
Eulerian anchor force (see Section 4.2 and [Cirio et al. 2014]). In
the frictionless case shown in Fig. 7, the green tablecloth remains
perfectly on the table.

6 DISCUSSION AND FUTURE WORK
In this paper, we have extended EoL rod simulation to handle ro-
bustly complex contact arrangements with multiple stacked rods,
and sliding and crossing contacts. As shown in our experiments,
these conditions appear in diverse practical scenarios, including the
simulation of complex knits, and contact between multiple layers of
cloth. Our solution handles ubiquitous discretization degeneracies
in a simple and elegant manner, and its implementation brings only
small changes to previous methods.

In the development of our method and implementation, we have
identified several limitations as well as opportunities for further
investigation. As discussed in Section 4.1, switching node assign-
ments to and from EoL and EIL introduces discontinuities in energy
and momentum. These discontinuities did not turn into artifacts
in our examples, but perhaps they affected mildly the convergence
of the Newton solve. Smoothing these discontinuities is possible,
by locally optimizing the Lagrangian and Eulerian coordinates of
switching nodes, or by making node transitions progressive.

In the examples, we did not implement dynamic addition of EoL
nodes. It is not evident when this could turn beneficial or not. It
would be necessary to design some metric that compares simulation
accuracy and/or robustness with or without the addition of EoL
nodes at contacts, and then use this metric to guide the addition of
new EoL nodes.

The contact constraint of EoL and/or EIL nodes ignores the thick-
ness of rods. However, this thickness should be accounted for in
the computation of bending forces. We currently add the thickness
as postprocessing for rendering, and the same procedure could be
followed at runtime for force computation.

Our knit relaxation examples demonstrate the ability of EoL meth-
ods to support complex and tight knits with yarn sliding. However,
some cases may be difficult to handle due dynamic creation of con-
tacts. In such cases, one could use a purely Lagrangian method [Leaf
et al. 2018] for the initial relaxation of the yarn structure, followed
by our EoL method for dynamic simulation of larger patches or
garments.

We have demonstrated our solution on patches of cloth simulated
fully at yarn level. Such full yarn-level detail appears particularly
relevant in our complex knit examples, to correctly capture sliding
of slip-stitches. However, in other examples the simulation cost
could be reduced drastically by considering yarn-level detail only
when and where necessary.

To conclude, we think it is worth to explore the main ideas of our
work beyond rods, for EoL formulations on other domains, such as
thin-shell cloth [Weidner et al. 2018]. A key insight of our method
is to avoid remeshing, and turn EoL nodes into EIL nodes when the
discretization becomes degenerate. The extension of EIL nodes to
other domains may be simple, but our node assignment algorithm
is tied to the linear domain of rods.
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A NODE TRANSITION BETWEEN EOL AND EIL
Consider a node with Eulerian coordinate ub , which transitions
from EoL (as in Fig. 2-c) to EIL (as in Fig. 2-d) and vice versa. This
transition produces a discontinuity in the local energy. Under certain
assumptions, the discontinuity can be minimized through a closed-
form optimization of the Eulerian coordinateub . In this optimization,
we assume that the matching node (v, xb ) remains fixed, and we
consider only stretch energies.
In the transition from EIL to EoL, the Lagrangian coordinate

moves from x(ub ) to xb , to join the matching node. This jump in-
troduces stretch energy, which can be minimized by making stretch
uniform across the new EoL node. Then, the optimal Eulerian coor-
dinate can be computed as

ub ←
∥xb − xc ∥ ua + ∥xa − xb ∥ uc
∥xa − xb ∥ + ∥xb − xc ∥

. (7)

In the transition from EoL to EIL, the Lagrangian coordinate is
now interpolated from xa and xc . This jump introduces a non-zero
energy in the newly created soft-constraint with xb . This energy can
be minimized by placing x(ub ) on the closest point to xb along the
segment between xa and xc . Then, the optimal Eulerian coordinate
can be computed as

ub ← max
(
(xa − xc )T (xb − xc )ua + (xa − xc )T (xa − xb )uc

(xa − xc )T (xa − xc )
,uc

)
.

(8)
This result can also be expressed as a function of the angle θ between
the rod segments (xa − xb ) and (xb − xc ):

ub ← max
(
wa ua +wc uc

wa +wc
,uc

)
, (9)

withwa = ∥xb − xc ∥
2 + ∥xa − xb ∥ ∥xb − xc ∥ cosθ ,

andwc = ∥xa − xb ∥
2 + ∥xa − xb ∥ ∥xb − xc ∥ cosθ .

Furthermore, with uniform stretch in both segments, the result can
be expressed as a function of the Eulerian coordinates alone:

wa = (ub − uc )
2 + (ua − ub ) (ub − uc ) cosθ, (10)

wc = (ua − ub )
2 + (ua − ub ) (ub − uc ) cosθ .

Then, it is easy to see that, as the segments become collinear, i.e.,
θ → 0, the optimal result is to simply leave the Eulerian coordinate
ub of the EIL node unchanged.
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