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Figure 1: With strain rate dissipation potentials, we ensure by construction that damping forces affect only motions that produce a change
of deformation. The damping model is simple yet rich and versatile, as demonstrated by the examples. We have tested strain rate dissipation
potentials on cloth simulations modeled with StVK elasticity and with yarns with sliding persistent contacts. The snapshots show a yarn-level
shirt with over one million nodes.

Abstract
Damping determines how the energy in dynamic deformations is dissipated. The design of damping requires models where
the behavior along deformation modes is easily controlled, while other motions are left unaffected. In this paper, we propose
a framework for the design of damping using dissipation potentials formulated as functions of strain rate. We study simple
parameterizations of the models, the application to continuum and discrete deformation models, and practical implications for
implementation. We also study previous simple damping models, in particular we demonstrate limitations of Rayleigh damping.
We analyze in detail the application of strain rate dissipation potentials to two highly different deformation models, StVK
hyperelasticity and yarn-level cloth with sliding persistent contacts. These deformation models are representative of the range
of applicability of the damping model.

CCS Concepts
•Computing methodologies → Physical simulation;

1. Introduction

Damping is a defining characteristic of real-world deformable ob-
jects. It determines the duration of oscillations, and hence the per-
ception of dynamics and sound. Due to this relevance, it becomes a
basic ingredient of physics-based computer animated deformations.

However, despite the omnipresence of damping, its study has re-
ceived far less attention than its companion elasticity. Few works
have been explicitly dedicated to the problem, with notable excep-
tions to avoid spurious damping [SSF13], estimate model param-
eters [BTH∗03], or design damping behaviors in an artist-friendly
manner [XB17]. Perhaps due to the limited attention, many com-

puter animation works have used simplistic damping models, such
as Rayleigh damping [Ray96]. In our experience, this approach
turns problematic when fine control is necessary, either for artis-
tic design or to match real-world behaviors.

In this work, we study the design of simple damping models
that satisfy important conditions by construction. In particular, we
seek forces that damp only the change of deformation, and leave
other dynamics unaffected. Such conditions have been advocated
before [BW98, BMF03], but we formalize the requirements for
good damping and establish a framework for the design of simple
damping models.
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We build our damping model on top of the concept of dissipation
potential from classical mechanics [GPS14]. This approach par-
allels the design of elastic deformation models based on energy
formulations [XSZB15, MMO16], and same as energy-based elas-
tic models simplify the enforcement of good elasticity conditions,
dissipation potentials simplify the enforcement of good damping
conditions. As described in Section 3, we propose a framework
for damping models with dissipation potentials based on strain
rate. This framework also helps us demonstrate why the popular
Rayleigh damping model fails for nonlinear deformation models.

Furthermore, we develop diverse applied examples that prompt
the considerations to be addressed for practical implementations.
In Section 4, we discuss the application of strain rate dissipa-
tion potentials to the Saint-Venant Kirchhoff (StVK) hyperelastic-
ity model [SB12]. In this setting, we study the design of contin-
uum dissipation models and their discretization, possibilities for
parameterization under multi-dimensional strain metrics, and im-
plications of implicit integration. In Section 5, we discuss the appli-
cation of strain rate dissipation potentials to yarn-level cloth sim-
ulation with sliding persistent contacts [CLMMO14]. This model
allows us to analyze the application to discretizations that com-
bine Lagrangian and Eulerian coordinates. In addition, damping of
yarn bending gives rise to challenges in the design of strain metrics,
which are not present in elastic deformations alone.

We have evaluated the implementation of strain rate dissipa-
tion potentials on StVK elasticity for cloth simulation as well as
yarn-level cloth (the latter shown in Fig. 1). Thanks to their diver-
sity, these two examples cover many aspects of elastic deforma-
tion models, namely, nonlinear, multidimensional, and/or angular
deformation metrics, as well as Lagrangian and mixed Lagrangian-
Eulerian discretizations.

2. Related Work

The energy stored in oscillating mechanical systems may be dissi-
pated due to several reasons: collisions, friction, or ultimately the
resistance of matter to change its current shape or structure. All
these dissipative effects are grouped under damping. Computer an-
imation has addressed the simulation of materials and effects with
very diverse damping behaviors, from the highly damped behavior
of flesh to the inviscid behavior of water.

Computer animation works usually distinguish three distinct
types of damping, depending on their nature and purpose. (i)
Damping that is deliberately formulated in order to simulate the na-
ture of the given material is often referred to as material-intrinsic
damping [CK05]. (ii) Damping produced by implicit formulations
of the system dynamics is referred to as artificial or numerical
damping. (iii) Damping added to enhance stability is usually re-
ferred to as fictitious damping [YKC00]. In our work, we focus
on material-intrinsic damping; therefore, our purpose is to model
internal dissipative forces resulting from changes in the object or
material state.

The first step in the design of a damping model is to identify
the relevant state variables that determine energy dissipation. The
most common approach is to assume that dissipation is determined
by instantaneous velocities, which gives rise to velocity-dependent

potentials, such as Rayleigh’s dissipation function [Ray96]. Many
works in computer animation implement linear damping models
that fit this category [OSG02,GHDS03,BJ05,CLMMO14,GSS∗15,
XB17]. Linear damping models are well suited for linear deforma-
tion models, but as we demonstrate in this paper, they fail for non-
linear deformation models.

Baraff and Witkin [BW98] paid attention to the design of good
dissipation models for dynamic deformations. They defined damp-
ing forces aligned with soft-constraint elastic forces, but propor-
tional to constraint velocities instead. Oh et al. [OAW06] identified
that semi-implicit integration adds artificial damping, and further
improved the work of Baraff and Witkin with an implicit integra-
tion technique that is able to reproduce stable cloth without intro-
ducing excessive damping forces.

Inadvertently, Baraff and Witkin designed a damping model that
constitutes a particular case of dissipation potential [GPS14], de-
fined as a quadratic function of constraint velocities. Recently,
dissipation potentials were revisited as quadratic functions of
strain rate, and applied to yarn-level cloth simulation with mixed
Lagrangian-Eulerian discretization [SBO17]. In our work, we for-
malize the design of dissipation potentials as functions of strain
rate, analyze theoretically their benefits and the pitfalls of Rayleigh
damping, and discuss parameterization, discretization, and imple-
mentation aspects. We also pick yarn-level cloth simulation as one
of our target examples, and we revisit and generalize the observa-
tions in [SBO17] about the application of dissipation potentials.

We test our damping modeling framework on cloth simulation
examples. Terzopoulos et al. [TPBF87] were the first to add damp-
ing forces to cloth simulation in computer graphics. They imple-
mented a simple viscous drag force, which damps all types of mo-
tion, not only deformations. Carignan et al. [CYTT92] recognized
the need for damping functions which do not penalize rigid-body
motion of the cloth, hence they added a force which damps cloth
stretch and shear. Nevertheless, their damping function is linear in
velocities, and suffers the limitations of Rayleigh damping. Volino
and Magnenat-Thalmann [VMT00, VMT01] observed that inap-
propriate damping forces may prevent wrinkles from forming or
disappearing correctly, or may prevent fabrics even from falling
under their own weight. Choi and Ko [CK05] proposed a method
that includes artificial damping and material-intrinsic damping, but
avoids fictitious damping through the use of a predicted static post-
buckling response as an effective way of handling the instabilities
associated with post-buckling situations.

The design of damping forces has also received attention in
other contexts in computer animation. Variational integrators aim
to preserve dynamic invariants accurately, and one of their re-
sults is to minimize numerical damping [KYT∗06, GSS∗15]. Su
et al. [SSF13] designed a simulation method that preserves energy
by monitoring undesired energy dissipation, which is restored into
the system.

Several authors have proposed methods for the estimation of
dissipative models from measurements, such as damping coef-
ficients from video [BTH∗03], internal friction parameters from
force-deformation measurements [MTB∗13], or damping coeffi-
cients from sound [PDJ∗01]. The recent work of Xu and Bar-
bič [XB17] introduces a method to design damping behaviors in an
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artist-friendly manner. Starting from a regular Rayleigh damping
model, they modify the damping behavior for arbitrary deforma-
tion directions.

Beyond the simulation of dynamic deformation of solid objects,
the design of dissipation models has received attention in the con-
text of fluid animation. In that context, most works have focused
their efforts on the accurate yet efficient reproduction of com-
plex effects under the dynamic topology of fluids. Some exam-
ples include implicit viscosity formulations for the simulation of
highly viscous fluid materials and melting effects [CMIT02], or
accurate handling of buckling and coiling in free-surface viscous
flows [BB08].

3. Dissipation Potentials for Good Damping

In this section, we describe and analyze the damping model based
on strain rate dissipation potentials. We start by defining the desired
properties of a good damping model. Then, we introduce strain rate
dissipation potentials and the generic derivation of damping forces.
We follow with practical considerations for the implementation of
strain rate dissipation potentials on continuum and discrete elas-
tic deformation models. And we discuss the computation of force
Jacobians for implicit integration.

To conclude the section, we compare strain rate dissipation po-
tentials to other simple damping models used in computer anima-
tion. In particular, for the Rayleigh damping model, we provide
theoretical and experimental analysis.

3.1. Good Damping

Let us assume that deformation is measured through some generic
strain metric ε. We define that a certain velocity v is decoupled from
deformation if it produces no strain rate, or change of deformation,
i.e., ε̇ = ∇xε

T v = 0. In other words, a velocity that is decoupled
from deformation lies on the null-space of the strain gradient∇xε.

We define good damping as the dissipative forces fd that pro-
duce no effect on velocities that are decoupled from deformation.
Even though real-world dissipative forces may also act on veloci-
ties that are decoupled from deformation, such relationship is com-
plex and generally unknown. Then, our strategy is to model cou-
pled and decoupled damping separately, as also advocated by oth-
ers before [BW98, BMF03]. From the definition of velocities that
are decoupled from deformation, good damping implies that dissi-
pative forces have a null projection onto the null-space of the strain
gradient, i.e.,(

I−∇xε

(
∇xε

T ∇xε

)−1
∇xε

T
)

fd = 0. (1)

3.2. Strain Rate Dissipation Potential

We model dissipation using the concept of dissipation potential
from classical mechanics [GPS14]. Given a dissipation potential
Vd , dissipative forces are obtained as the negative velocity-gradient
of the dissipation potential. These forces can be added to the reg-
ular Euler-Lagrange equations. For a system with kinetic energy
T = 1

2 vT Mv, conservative potential Ve, and dissipation potential

Vd , the Euler-Lagrange equations on reduced coordinates x, with
velocities v = ẋ, are:

Mv̇ =∇xT −∇xVe−∇vVd− Ṁv. (2)

We propose to define the dissipation potential in terms of the
strain rate metric ε̇, i.e., Vd(ε̇). Then, the dissipative forces fd can
be expressed as

fd =−∇vVd =−∇xε∇ε̇Vd . (3)

The term ∇ε̇Vd can be regarded as an (integrated) dissipative
stress. Then, we observe that strain rate dissipation potentials pro-
duce dissipative forces that can be obtained by projecting a dissipa-
tive stress onto the space of motions defined by the strain gradient.
And it follows that these dissipative forces have a null projection
onto the null-space of the strain gradient. We can confirm this by
plugging the dissipative forces (3) into (1), and we conclude that
strain rate dissipation potentials satisfy the good damping condi-
tion by construction.

3.3. Integration of Potential Densities

Furthermore, we consider a particular type of potential, obtained
by integrating potential densities. We start from an elastic potential,
defined in terms of some multi-dimensional strain metric ε, i.e.,

Ve = ∑
i

wi Ψe,i(ε), (4)

where Ψe,i(ε) is a strain energy density evaluated on some inte-
gration point, and wi is the corresponding weight. Such integrated
models are ubiquitous, and they encompass both discrete elastic
models, as well as FEM models where energies are evaluated using
quadrature formulations. Note that, for example, the simple FEM
model with linear basis functions on simplicial meshes corresponds
to the case where the strain energy density is evaluated once per
mesh element, and the integration weight is the volume of the ele-
ment.

From the elastic potential above, we may derive elastic forces fe.
For Lagrangian discretizations, where integration weights wi are
constant, the elastic forces can be obtained as

fe =−∇xVe =−∑
i

wi∇xεSe,i. (5)

Here, the term Se,i =∇εΨe,i is, by definition, the elastic stress.

We define similarly a dissipation potential, by integrating dissi-
pation potential densities that depend on the strain rate ε̇:

Vd = ∑
i

wi Ψd,i(ε̇). (6)

And we derive the corresponding dissipative forces:

fd =−∇vVd =−∑
i

wi∇xεSd,i. (7)

Here, Sd,i =∇ε̇Ψd,i is the dissipative stress.

By contrasting (7) and (5), we can conclude that, for purely La-
grangian discretizations, elastic and dissipative forces can be ob-
tained by following a similar procedure. In both cases, they can be
obtained as weighted sums of the respective stress values multiplied
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by the strain gradient. In Section 5 we visit the case of recently
popular mixed Lagrangian-Eulerian discretizations, which do not
follow the same pattern.

3.4. Force Jacobians

Implicit integration methods require the computation of force Ja-
cobians for the linearization of accelerations. Damping forces (7)
depend on both positions and velocities, hence we need both Jaco-
bians.

The Jacobian w.r.t. velocities is:

∂fd
∂v

=−∑
i

wi∇xε
∂Sd,i

∂ε̇
∇xε

T . (8)

This Jacobian is typically not problematic. The term ∂Sd,i
∂ε̇

is sym-
metric and, for the case of quadratic dissipation potentials, con-
stant. In that case, positive definiteness can easily be enforced.

The Jacobian w.r.t. positions is:

∂fd
∂x

=−∑
i

wi

(
∂

2
ε

∂x2 Sd,i +∇xε
∂Sd,i

∂ε̇
∇xε̇

T

)
. (9)

This Jacobian may be problematic for two reasons. The second
term is not symmetric, and we choose to discard it. The first term,
on the other hand, may not be positive definite. To enforce positive
definiteness, we propose to clamp the negative eigenvalues of the
stress Sd,i. Note that a similar term ∂

2
ε

∂x2 Se,i arises in the Jacobian
∂fe
∂x of elastic forces (5); therefore, implicit integration of damping
forces based on strain rate dissipation potentials does not add no-
table complexity or cost.

We have validated that the two modifications to the Jacobian
are beneficial in practice. We have tested them on implicit integra-
tion with Newmark and backward Euler methods with full Newton
solves, and in the backward Euler case also with just one Newton
iteration. The modifications to the Jacobian provide faster conver-
gence of the Newton solves, as they enable the use of fast solvers
for symmetric positive-definite matrices. Under just one Newton it-
eration, we have observed a slight difference in kinetic energy (less
than 2% in our tests), which is far less than the error introduced by
exiting the solve early.

3.5. Damping Models in Computer Animation

Baraff and Witkin [BW98] designed dissipative forces for soft con-
straints, where their constraints can be paralleled to strain metrics.
Their formulation enforces that dissipative forces are aligned with
constraint gradients, hence they satisfy the good damping condi-
tion by construction. Our strain rate dissipation potentials can be
regarded as a generalization of their dissipative forces. By work-
ing with dissipation potentials, and not directly with forces as they
do, our formulation supports arbitrary nonlinearity, anisotropy, etc.,
while theirs is limited to quadratic dissipation potentials. Further-
more, by integrating potential densities as described in Section 3.3,
our formulation enables a discretization-independent parameteriza-
tion.

A very common damping model in computer animation is the

Rayleigh dissipation function [Ray96], which defines a generic
dissipation potential that is quadratic on the velocities, i.e., Vd =
1
2 vT Dv. Unfortunately, there is no guarantee that the resulting
forces satisfy the good damping condition.

As a particular case of Rayleigh dissipation function, the
Rayleigh damping model chooses D=αM+β

∂
2Ve

∂x2 . The scalar val-
ues α and β weight, respectively, the mass matrix and the Hessian
of the elastic energy (or tangent stiffness matrix). These two terms
are supposed to provide damping of absolute motion and change of
deformation respectively, hence α = 0 is a trivial requirement for
our condition of good damping. From (5), and assuming a purely
Lagrangian discretization, we conclude that the tangent stiffness
matrix can be expressed in terms of the strain gradient as

∂
2Ve

∂x2 =
∂

2
ε

∂x2 ∇εVe +∇xε
∂

2Ve

∂ε2 ∇xε
T . (10)

With α = 0, the resulting Rayleigh damping force is

fR =−β

(
∂

2
ε

∂x2 ∇εVe +∇xε
∂

2Ve

∂ε2 ∇xε
T

)
v. (11)

By plugging this force in the good damping condition (1), we
conclude that Rayleigh damping is good damping only if the strain
metric is linear, i.e., ∂

2
ε

∂x2 = 0. Unfortunately, linear strain metrics
fail for large deformations. In the next section, we analyze the effect
of Rayleigh damping on a simple experiment. Another corollary is
that, by dropping the offending term of the stiffness matrix, we can
obtain good Rayleigh damping which is equivalent to the following
strain rate dissipation potential:

Vd =
1
2

βε̇
T ∂

2Ve

∂ε2 ε̇. (12)

3.6. Experimental Analysis: Damping a Linear Spring

Let us consider a linear spring on a horizontal plane, with one mov-
ing end-point x and the other end-point fixed at the origin, as shown
in Fig. 2. With rest-length L, the strain of the spring is ε =

‖x‖
L −1.

It follows that the strain gradient is ∇xε = 1
L ·

x
‖x‖ , the strain Hes-

sian is ∂
2
ε

∂x2 = 1
L

(
I− x
‖x‖

xT

‖x‖

)
, and the strain rate is ε̇ = 1

L ·
xT

‖x‖ ẋ.

We design a quadratic elastic energy of the form Ve = 1
2 Lke ε

2,
Rayleigh damping with α = 0, and an equivalent strain rate dissi-
pation potential given by (12).

In Fig. 2 we plot kinetic energy profiles for several animations
where we compare Rayleigh damping and strain rate dissipation
potentials. In all the animations, the moving end-point is initialized
with a velocity of 20 tangent to the spring, with the spring unde-
formed. The simulation parameters were: rest-length L = 2, elastic
stiffness ke = 100, mass m = 1. Fig. 2 compares the behavior for
several values of β. With strain rate dissipation potentials, damp-
ing affects only the oscillation of the spring length, and the system
reaches a uniform circular motion where the elastic force acts as
centripetal force. With Rayleigh damping, the system slows down
toward a full stop.

The results were obtained with a time step of 0.01, and are prac-
tically identical for symplectic Euler and implicit Newmark, hence
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𝐿

𝐱

𝐯

Figure 2: We simulate a spring rotating on a horizontal plane un-
der different damping models. Left: Initial conditions, with mass
at position x and velocity v tangent to the spring, of rest-length L.
Right: Evolution of the kinetic energy with our strain rate dissi-
pation potential Vs. Rayleigh damping, for three different values of
damping coefficient β. The dissipation potential is modeled accord-
ing to (12) in this experiment.

we can rule out effects due to the integration method. Backward Eu-
ler, on the other hand, suffers noticeable numerical damping, how-
ever far less than the one introduced by Rayleigh damping. With
implicit Newmark and a time step of 0.1, the damping behavior is
still well preserved under a full Newton solve, while exiting the
Newton solve after one iteration introduces some error, again far
less than the error introduced by Rayleigh damping.

4. Example 1: StVK Elasticity

We choose the StVK elastic material model as an example of hy-
perelasticity. In this section, we study the application of strain rate
dissipation potentials to this deformation model, and we propose a
parameterization that produces a linear isotropic dissipative stress.

Given deformed and undeformed positions x and x̄ respectively,
the deformation gradient is defined as F = ∂x

∂x̄ . Then, the Green

strain tensor is defined as ε = 1
2

(
FT F− I

)
, and the StVK elastic

material model defines a strain energy density

Ψe =
λ

2
tr(ε)2 +µ tr

(
ε

2
)
, (13)

with λ and µ the Lamé constants.

This energy definition yields the second Piola-Kirchhoff stress

Se =∇εΨe = λ tr(ε) I+2µε. (14)

The use of a nonlinear strain metric turns the complete model non-
linear, yet the stress-strain relationship is linear and isotropic.

Based on the integral formulation (4) of the StVK strain energy
density (13), we could define a dissipation potential for StVK by
following the Rayleigh damping analogy (12). However, strain rate
dissipation potentials allow much more versatile formulations.

Here, we explore one example, using a parameterization anolo-
gous to the StVK strain energy density (13). We formulate an anal-
ogous dissipation potential, substituting the strain with the strain
rate:

Ψd =
λd
2

tr(ε̇)2 +µd tr
(

ε̇
2
)
, (15)

We consider two independent material parameters λd and µd , anal-
ogous to the Lamé parameters for the elastic case. Interestingly,
isotropic Newtonian fluids are also parameterized by two parame-
ters, typically the dynamic viscosity and the bulk viscosity. How-
ever, the mapping to these two parameters is unclear, as they are
defined for a different strain rate tensor.

Our proposed dissipation potential definition yields the follow-
ing linear isotropic dissipative stress:

Sd =∇ε̇Ψd = λd tr(ε̇) I+2µd ε̇. (16)

This formulation enables very simple implementation in prac-
tice, as discussed in Section 3.3. At each integration point, the dis-
sipative stress is evaluated and added to the second Piola-Kirchhoff
stress, and the rest of the force computation follows as usual. The
evaluation of the dissipative stress requires the strain rate, which is
obtained by differentiating the Green strain tensor, and yields:

ε̇ =
1
2

(
FT Ḟ+ ḞT F

)
. (17)

The time derivative of the deformation gradient is nothing else but
the gradient of the velocity w.r.t. undeformed coordinates, i.e., Ḟ =
∂v
∂x̄ . For linear shape functions, the deformation gradient is obtained
per element as F = X · X̄−1, where X is a matrix built with element
node positions as columns, and X̄ is a constant matrix that depends
on undeformed node positions [SB12]. The time derivative of the
deformation gradient can be obtained similarly as Ḟ = V · X̄−1,
where V is a matrix built with element node velocities as columns.

The dissipative stress (16) could be applied also to other defor-
mation models. One example is corotational elasticity, with strain
ε = R−1 F− I, and R a rotation matrix obtained through polar de-
composition of the deformation gradient F. The implementation
would differ in the computation of the gradient and the time deriva-
tive of the strain, and we leave the test of such extensions for future
work.

As discussed in Section 3.4, the application of the model with
implicit integration requires the computation of force Jacobians.
With our stress definition (16), ensuring well-behaved Jacobians is
simple. In the Jacobian w.r.t. velocities (8), the term ∂Sd,i

∂ε̇
is con-

stant, symmetric, and also positive definite for the right values of
λd and µd . In the Jacobian w.r.t. positions (9), we do as proposed
in Section 3.4, and clamp the negative eigenvalues of the stress Sd,i
for each mesh element.

5. Example 2: Yarns with Sliding Persistent Contacts

Cirio et al. [CLMMO14, CLMO17] designed a yarn-level cloth
model that represents yarns as flexible rods in persistent contact,
but with the option to slide with respect to each other. Their
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reduced-coordinate representation combines Lagrangian coordi-
nates for the 3D position of yarn crossings, with Eulerian coor-
dinates for the sliding arc-length positions of such yarn crossings.
Thanks to the sliding arc-length coordinates, their method avoids
altogether the computation of collision detection and collision re-
sponse between yarns that are permanently in contact, and handles
such inter-yarn contact implicitly.

The model of yarns with sliding persistent contacts poses two in-
teresting questions for the design of good damping. First, due to the
existence of Eulerian coordinates, the analysis of elastic and damp-
ing forces in Section 3.3 does not hold. Second, the straightforward
design of strain rate dissipation potentials for rod bending suffers
robustness problems due to indeterminacy of the strain gradient.
In this section, we address these two questions, demonstrating the
application of strain rate dissipation to yarn-level cloth simulation.

5.1. Forces and their Jacobians

Yarns with sliding persistent contacts constitute a case of mixed
Lagrangian-Eulerian discretization [SJLP11, FLLP13]. In such
models, the integration weights of elastic energies formulated as
(4) are not constant, as they depend on the Eulerian coordinates.
Revisiting the derivation of elastic forces, we obtain the following
expression:

fe =−∇xVe =−∑
i

wi∇xε∇εΨe,i−∑
i
∇xwi Ψe,i. (18)

Unlike the elastic force (5) for purely Lagrangian discretizations,
in this case the elastic force does not point in the direction of the
strain gradient∇xε. It exhibits a term that minimizes elastic energy
simply by smearing it out by changing the Eulerian discretization.
This term points in the direction∇xwi.

The damping force (7) for Lagrangian discretizations is valid for
the mixed Lagrangian-Eulerian case, as the integration weights de-
pend on positions, not velocities. Several authors in the past, no-
tably Baraff and Witkin [BW98], have argued for damping forces
that are aligned with elastic forces. As shown here, this should not
be the case for mixed Lagrangian-Eulerian discretizations.

In the computation of force Jacobians, the Jacobian w.r.t. posi-
tions (9) also needs to be revisited. For mixed Lagrangian-Eulerian
discretizations, it turns:

∂fd
∂x

=−∑
i

wi

(
∂

2
ε

∂x2 Sd,i +∇xε
∂Sd,i

∂ε̇
∇xε̇

T

)
+∇xεSd,i∇xwT

i .

(19)
The added term, due to the gradient of the integration weight∇xwi,
is not symmetric. Following the same recommendations discussed
in Section 3.4, we choose to discard this term.

5.2. Damping for Rod Bending

Cirio et al. [CLMMO14] model individual yarns as twist-free
isotropic elastic rods. They are discretized into linear segments,
with stretch and bending elastic energies that capture their internal
resistance to deformation. Unfortunately, the bending deformation
model is problematic for the formulation of strain rate dissipation
potentials, due to indeterminacies at small angles. This problematic

behavior is independent of the Eulerian discretization; therefore,
we limit our discussion to a purely Lagrangian discretization.

𝐚
𝜃

𝐛

Given two consecutive rod segments as shown above, with seg-
ment vectors a and b, and added rest-length L, bending strain εθ

can be defined as

εθ =
θ

L
, with tanθ =

|a×b|
aT b

. (20)

Others have proposed similar bending strain formulations, using,
e.g., tan θ

2 [BWR∗08] or sin θ

2 [BMF03] instead of the angle θ.
However, they are not well behaved for the large bending angles
suffered by cloth yarns. tan θ

2 →∞ for θ→ π, and sin θ

2 yields a
nonconvex energy for θ > π

2 .

From the strain expression (20), bending strain rate can be de-
rived as ε̇θ = θ̇

L , with angular velocity

θ̇ =
cos2

θ

aT b

((
aT ḃ+bT ȧ

)
tanθ+

(a×b)T

|a×b|
(
a× ḃ−b× ȧ

))
.

(21)

The strain gradient is not defined when the bending angle is θ =
0. This is not a problem for elastic forces (5) as long as the stress
cancels out, which is the case, for example, for typical quadratic
energies. However, in damping forces (7), the stress at θ = 0 may
be arbitrary, leading to an undefined force direction.

The indeterminacy problem at vanishing angles can be circum-
vented thanks to a small-angle approximation of the bending strain.
In particular, and based on the small-angle approximation of the
tangent, i.e., limθ→0

tan θ

θ
= 1, we propose the following vector

strain metric for small bending angles:

εk =
k
L
, with k =

a×b
aT b

. (22)

For quadratic energies, the energy for the large-angle bending
strain (20) and the small-angle bending strain (22) are equivalent
under small angles, as demonstrated through

lim
θ→0

ε
2
θ

εT
k εk

= lim
θ→0

θ
2

‖k‖ = lim
θ→0

θ
2

tan2 θ
= 1. (23)

From the small-angle strain expression (22), bending strain rate
can be derived as

ε̇k =
1
L
· 1

aT b

((
aT ḃ+bT ȧ

)
k+a× ḃ−b× ȧ

)
. (24)

The small-angle bending strain (22) has a well-defined gradient
for vanishing angles; therefore, it enables robust computation of
damping forces. For angles larger than a threshold, we switch back
to the regular bending strain (20), as the small-angle bending strain
tends to infinity for large angles.

6. Results

We have tested the practical implementation of strain rate dissipa-
tion potentials on the two deformation models described in Sec-
tion 4 and Section 5, both applied to cloth simulation. Please see
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Figure 3: The plots demonstrate the ability of strain rate dissipation potentials to correctly damp target deformations, leaving others
unaffected. All plots show the evolution of kinetic energy under various settings, for the motions depicted beneath. The two plots on the left
correspond to the StVK cloth model with no damping, Rayleigh damping with β = 0.15, and our damping tuned to match Rayleigh damping
as in (12). Damping is applied only to the membrane StVK model, not to bending. In the ‘hanging’ motion, our damping and Rayleigh
damping produce almost equivalent overdamped motion. In the ‘swinging’ motion, on the other hand, our model produces a result close to
the no-damping case, while Rayleigh suffers high damping. The two plots on the right correspond to the yarn-level cloth model using our
damping model, comparing two combinations of stretch damping βs and two combinations of bending damping βb. As desired, the stretch
damping coefficient determines the behavior in the ‘hanging’ motion, while the bending damping coefficient determines the behavior in the
‘flapping’ motion.

the accompanying video to watch the damping behavior in action.
For StVK cloth, we have used the implementation with remeshing
available in ARCSim [NSO12]. The simulator uses backward Eu-
ler integration with one Newton iteration per time step, and this
integration method introduces numerical damping. For yarn-level
cloth, we have used the woven cloth simulation method with sliding
persistent contacts [CLMMO14], with repulsive forces for collision
handling. We use backward Euler numerical integration with adap-
tive time stepping, with a full Newton solve per time step. Again,
the integration method introduces numerical damping. The code
is implemented fully on the GPU. The StVK and yarn-level cloth
models are not supposed to be compared to each other, as the ex-
amples use models of very different resolution, and the parameters
do not necessarily produce best-match behaviors.

In Fig. 3 we demonstrate the ability of strain rate dissipation
potentials to control damping behavior on specific deformation
modes, while leaving other motions unaffected. We have executed
two different experiments.

Using the StVK cloth model on a square patch with 1,089 ver-
tices (with remeshing disabled), we compare the behavior with no
damping, Rayleigh damping with β = 0.15, and our damping tuned
to match Rayleigh damping as in (12). Damping is applied only
to membrane deformation, not to bending. The two left plots in
Fig. 3 show the evolution of kinetic energy for two different mo-
tions (‘hanging’ and ‘swinging’), shown beneath. In the ‘hanging’
motion, our damping and Rayleigh damping produce almost equiv-
alent overdamped motion. In the ‘swinging’ motion, on the other
hand, our model produces a result close to the no-damping case,
while Rayleigh suffers high damping.

Using the yarn-level cloth model on a square patch with 20,402
nodes, we compare the behavior for different values of stretch
damping (βs) and bending damping (βb). In both cases, we param-
eterize the dissipation potential following the analogy to Rayleigh
damping (12). The two right plots in Fig. 3 show the evolution
of kinetic energy for two different motions (‘hanging’ and ‘flap-
ping’), shown beneath. As desired, the stretch damping coefficient
determines the behavior in the ‘hanging’ motion, while the bend-
ing damping coefficient determines the behavior in the ‘flapping’
motion.

We have also tested the strain rate dissipation potentials on larger
animations. We have dressed a character model with a shirt, and
we have simulated the motion of the shirt using both the StVK and
yarn-level cloth models, with two different sets of damping param-
eters each (medium damping and low damping). The character is
animated using publicly available data [PMRMB15]. Fig. 4 shows
several snapshots of the animation for each cloth model and choice
of damping parameters. Please watch the accompanying video to
appreciate the differences in action. In the snapshots, the examples
with less damping exhibit more folds.

For the StVK simulation, we have followed the parameteriza-
tion of dissipation potentials in (15), with the following parame-
ter values: in the medium damping case, λd = 30 and µd = 20; in
the low damping case, λd = 1.5 and µd = 1. With remeshing, the
number of vertices in the simulation ranges from 3,300 to 5,976
in the medium damping case, and from 3,386 to 6,926 in the low
damping case. Performance varies as the mesh resolution changes,
which in turn depends on the amount of dynamics and fine wrin-
kles. To calibrate performance, we have used a fixed mesh with
10,437 vertices. With a time step of 1.6 ms, the simulation took
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Figure 4: We compare a simulation of a shirt with two different deformation models and different settings of the strain rate dissipation po-
tentials. From top to bottom: (i) Yarn-level cloth simulation with medium damping (βs = 0.03 and βb = 0.16); (ii) Yarn-level cloth simulation
with low damping (βs = 3×10−4 and βb = 0.016); (iii) StVK cloth simulation with medium damping (λd = 30 and µd = 20); (iv) StVK cloth
simulation with low damping (λd = 1.5 and µd = 1).

roughly 1.45 seconds per time step. We have also compared per-
formance w.r.t. the Rayleigh damping model, and dissipation po-
tentials add an overhead of just 2%, due to a slight increase in the

cost of collision processing under more vivid dynamics, not due to
force computation or solver convergence.

For the yarn-level simulation, we have followed the parameter-
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ization of dissipation potentials with the Rayleigh damping anal-
ogy described in (12), with the following parameter values: in the
medium damping case, stretch damping with βs = 0.03 and bend-
ing damping with βb = 0.16; in the low damping case, stretch
damping with βs = 3× 10−4 and bending damping with βb =
0.016. With a shirt with 136,741 nodes, shown in Fig. 4, and an
average time step of 1 ms, the simulation took roughly 9.85 sec-
onds per time step. We have also simulated a higher resolution shirt,
shown in Fig. 1, with 1,053,175 nodes and intermediate damping
values of βs = 3× 10−3 and βb = 0.1. With an average time step
of 1 ms, the simulation took roughly 86 seconds per time step.

7. Discussion and Future Work

We have presented a framework for the design of damping models,
building on the concept of dissipation potentials. We show that a
formulation based on strain rate achieves controllable damping for
deformation modes, leaving other motions unaffected. We discuss
parameterization and implementation aspects, and demonstrate the
method on diverse deformation models.

Our approach also suffers some limitations. Since the strain rate
is tightly coupled to the choice of strain, the damping model may
inherit some limitations of the elastic deformation model. In ad-
dition, constraining damping forces to the direction of the strain
gradient is the major strength of the model, but it also constitutes a
limitation. Our model is not capable of modeling dissipative effects
in the null-space of the strain gradient at all, hence it needs to be
complemented with other damping forces to achieve such effects.
Note, however, that the constitutive model that maps strain rate to
dissipation potential may be arbitrarily nonlinear, anisotropic, or
heterogeneous, not limited to the characteristics of the elastic con-
stitutive model.

Our work opens interesting avenues for future work. Same as
energy-based elastic models set a solid framework for the design
of elastic behavior, damping models based on strain rate dissipa-
tion potentials set a solid framework for the design of dissipative
behavior. The model could be used as an integral building block
of measurement-based damping estimation or artist-driven damp-
ing design. To this end, it is important to identify artist-friendly
parameterizations.
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